Bodenproben: Nährstoffe in der Balance

Bei Düngestrategien prallen die Gegensätze zwischen pflanzen- und bodenorientierter Versorgung hart aufeinander. "Ernähre den Boden, um die Pflanze zu ernähren", entscheidet sich klar der USBerater Neal Kinsey, der in über 40 USBundesstaaten und weltweit 20 Staaten sehr teure, aber detaillierte "Bodenfruchtbarkeitsanalysen" liefert. Mit seinem Konzept will er auch hier Fuß fassen. Es geht auf den US-Wissenschaftler William AIbrecht (1888 bis 1974) zurück, der auch als Pionier des Öko-Landbaus gilt. Basis: Nährstoff-Balance: Die erhöhte Verfügbarkeit eines Nährstoffs mindert die eines oder mehrerer anderer. Anders herum: Wer bei einem Nährstoff höhere Verfügbarkeit erreichen will, kann das nur, wenn ein oder mehrere andere Nährstoffe Platz dafür machen. Dieses Prinzip soll die Bodenproduktivität verbessern. Wird also ein Nährstoff zugeführt, der im Mangel ist, kann dieser seine beste Wirkung nur entfalten, wenn der Gehalt eines anderen Nährstoffes, der im Überfluss gesenkt wird. Ist von einem Nährstoff zu wenig da, gibt es von einem anderen zu viel. Die Zufuhr von dem, was sich im Mangel befindet, sei der Weg, den Überfluss im Boden zu kontrollieren. Zuerst sollen demnach die Mängel korrigiert werden, um damit den Überfluss zu kontrollieren. Zweifelsohne ist die Balance der Nährstoffe wichtig für Bodenfruchtbarkeit, Ertrag und Produktqualität.
Dünge den Boden und lasse ihn die Pflanzen düngen: Die meisten Düngeprogramme basieren darauf, die Pflanze zu ernähren. Sie würden, wenn möglich, meint Kinsey, gern den Boden umgehen. "Aber der Boden ist der Magen der Pflanzen": Wird er richtig gefüttert, stellt er alles bereit, was nötig ist zum Verarbeiten organischer Substanz und für effektiven Umbau und Aufschluss der

Nährstoffe in pflanzenverfügbare Formen. Blattanalysen sind nützlich zur Erkennung des Ernährungszustandes der Pflanze. Bodenproben sind erforderlich zur Bodenernährung. "Wer die Probe auf dem Feld nimmt, entscheidet über die Qualität der Beratung und letztlich auch über das Endergebnis." Schließlich sei die Bodenatmosphäre wichtig. Das Ziel für die Bodenbiologie hängt von der korrekten Bodenchemie ab, die unmittelbar die physikalische Struktur beeinflusst. Nur wenn die Chemie stimmt, kann auch die Physik stimmen. Und wenn die Chemie korrekt ist, hat die Physik (25 \% Luft, 25 \% Wasser, 45 \% Mineralien, 5 \% Humus) den nötigen Aufbau. Das sei die korrekte Umgebung für eine "aktive Biologie".
Beispiele: Nach Kinsey's Erfahrungen können etwa Mg-Überschüsse bei Mais zu Mindererträgen bis $10 \mathrm{dt} /$ ha führen. Zudem sei bei uns verstärkt mit Ca - und KÜberschüssen zu rechnen, wobei sich zuviel K besonders negativ auf die Mg-Aufnahme auswirkt. Auch die zum Teil extreme Überversorgung mit P und K führe zu hohen Kosten und verschärften Umweltproblemen. Der Widerstand der bestehenden Beratung habe Kinsey's System lange verhindert. Angefeindet werde, wer Bilanzüberschüsse in der Landwirtschaft von $2600 \mathrm{~kg} \mathrm{P} \mathrm{P}_{2} \mathrm{O}_{5}$ oder $3000 \mathrm{~kg} \mathrm{~K} \mathrm{~K}_{2} \mathrm{O}$ pro ha ankreide. Auch will Kinsey Missverhältnisse in der Nährstoff und der Humusbilanz festgestellt haben: pH-Werte bis 7,8 kombiniert mit einer Ca-Überversorgung bis $2400 \mathrm{~kg} / \mathrm{ha}$, weiter Überversorgung mit P und K, andererseits B-, Mn-, S-Mangel und Humusgehalte von 1,3 bis 2,8 Prozent. Der pH-Wert ist für ihn beispielsweise kein genereller Anzeiger für den Kalkbedarf.
Totale Bodenanalyse: Untersucht werden im US-Labor Totale Kationen-AustauschKapazität, Boden-pH, organische Sub-

US-Berater Neal Kinsey verlangt über $80 €$ pro Bodenanalyse im US-Labor:
"Der Boden ist der Magen der Pflanzen."
stanz/Humusgehalt in Prozent, Stickstoff (ENR vom kollodialen Humus, geschätzte Menge, die in der Vegetation daraus zur Verfügung steht), Schwefel in ppm, Phosphor als $\mathrm{P}_{2} \mathrm{O}_{5}$, Olsen-Wert (ohne Berechnung, wenn der pH über 7,5 liegt), Basen-Sättigung in Prozent von Ca, K, Mg, Na, andere Basen und austauschbarer Wasserstoff, weiter $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$ und Na in kg/ha, Spurenelemente B, Mn, Zn, Fe, Cu in ppm. Der Basispreis für die Stan-dard-Bodenprobe: 75 € plus MwSt.!
Gegen Aufpreis gibt es weitere Untersuchungen. Dazu zählen Kobalt in ppm, vor allem bei Analysen für die Tierernährung, Molybden, Chlorid (Salz-Konzentration in ppm), Aluminium, Kalk-Analyse, Festmist/Gülle (Standard nur N, P, K, erweitert B, Fe, Mn, Cu, Zn), Kompost. "Rund 50 Betriebe" vor allem in Ostdeutschland und mit reduzierter Bodenbearbeitung schwören nach Angaben von York-Thomas Bayer von der deutschen Handelsvertretung in Berlin bereits auf die Bodenfruchtbarkeitsberatung.

